Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics.

نویسنده

  • C A Shera
چکیده

Basilar-membrane and auditory-nerve responses to impulsive acoustic stimuli, whether measured directly in response to clicks or obtained indirectly using cross- or reverse-correlation and/or Fourier analysis, manifest a striking symmetry: near-invariance with stimulus intensity of the fine time structure of the response over almost the entire dynamic range of hearing. This paper explores the origin and implications of this symmetry for cochlear mechanics. Intensity-invariance is investigated by applying the EQ-NL theorem [de Boer, Aud. Neurosci. 3, 377-388 (1997)] to define a family of linear cochlear models in which the strength of the active force generators is controlled by a real-valued, intensity-dependent parameter, gamma (with 0 < or = gamma < or = 1). The invariance of fine time structure is conjectured to imply that as gamma is varied the poles of the admittance of the cochlear partition remain within relatively narrow bands of the complex plane oriented perpendicular to the real frequency axis. Physically, the conjecture implies that the local resonant frequencies of the cochlear partition are nearly independent of intensity. Cochlear-model responses, computed by extending the model obtained by solution of the inverse problem in squirrel monkey at low sound levels [Zweig, J. Acoust. Soc. Am. 89, 1229-1254 (1991)] with three different forms of the intensity dependence of the partition admittance, support the conjecture. Intensity-invariance of cochlear resonant frequencies is shown to be consistent with the well-known "half-octave shift," describing the shift with intensity in the peak (or best) frequency of the basilar-membrane frequency response. Shifts in best frequency do not arise locally, via changes in the underlying resonant frequencies of the partition, but globally through the intensity dependence of the driving pressure. Near-invariance of fine time structure places strong constraints on the mechanical effects of force generation by outer hair cells. In particular, the symmetry requires that the feedback forces generated by outer hair cells (OHCs) not significantly affect the natural resonant frequencies of the cochlear partition. These results contradict many, if not most, cochlear models, in which OHC forces produce significant changes in the reactance and resonant frequencies of the partition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion.

Frequency modulations (or glides), reported in impulse responses of both the auditory nerve and the basilar membrane, represent a change over time in the instantaneous frequency of oscillation of the response waveform. Although the near invariance of glides with stimulus intensity indicates that they are not the consequence of nonlinear or active processes in the inner ear, their origin has rem...

متن کامل

Contralateral Inhibition of Click- and Chirp-Evoked Human Compound Action Potentials

In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213-2...

متن کامل

Two-tone suppression in cochlear mechanics.

Mechanical responses to one- and two-tone stimuli were recorded from the basilar membrane (BM) in the hook region of the guinea-pig cochlea. The most sensitive or "best" frequencies (BFs) for the sites studied were approximately 25-30 kHz. Two-tone suppression (2TS) of the responses to near BF probe tones was noted using suppressor tones either above or below the BF. Rates of growth of 2TS were...

متن کامل

Basilar membrane velocity in a cochlea with a modified organ of Corti.

Many cochlear models assign zero longitudinal coupling in the cochlea. Although this is consistent with the transverse basilar membrane (BM) fibers, the cochlear partition contains cellular longitudinal coupling. In cochlear models, longitudinal coupling diminishes passive BM tuning; however, it has recently been employed in theories of active mechanics to enhance tuning. Our goal in this study...

متن کامل

Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane.

A widely held hypothesis of mammalian cochlear function is that the mechanical responses to sound of the basilar membrane depend on transduction by the outer hair cells. We have tested this hypothesis by studying the effect upon basilar membrane vibrations (measured by means of either the Mössbauer technique or Doppler-shift laser velocimetry) of systemic injection of furosemide, a loop diureti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 110 1  شماره 

صفحات  -

تاریخ انتشار 2001